M1.(a) (i) Joins nucleotides (to form new strand).
Accept: joins sugar and phosphate / forms sugar-phosphate backbone
Reject: (DNA polymerase) forms base pairs / hydrogen bonds
(ii) (Prokaryotic DNA)

1. Circular / non-linear (DNA);

Accept converse for eukaryotic DNA
Ignore: references to nucleus, binary fission, strands and plasmids
2. Not (associated) with proteins / histones;

Accept does not form chromosomes / chromatin
3. No introns / no non-coding DNA.

Accept only exons
Q Neutral: no 'junk’ DNA
(b) (i) 1. Have different genes;

Reject: different alleles
2. (Sobases / triplets) are in a different sequence / order; Accept: base sequence that matters, not percentage
3. (So) different amino acid (sequence / coded for) / different protein / different polypeptide / different enzyme.
Unqualified 'different amino acids' does not gain a mark
Reject: references to different amino acids formed
Ignore: references to mutations / exons / non-coding / introns
(ii) (Virus DNA)

1. A does not equal T / G does not equal C ;

Accept: similar for equal
Accept: virus has more C than G / has more A than T
2. (So) no base pairing;
3. (So) DNA is not double stranded / is single stranded.

M2.(a) 1. DNA replicated;
Reject: DNA replication in the wrong stage
2. (Involving) specific / accurate / complementary base-pairing;

Accept: semi conservative replication
3. (Ref to) two identical / sister chromatids;
4. Each chromatid / moves / is separated to (opposite) poles / ends of cell.

Reject: meiosis / homologous chromosomes / crossing over
Note: sister chromatids move to opposite poles / ends $=2$
marks for mp 3 and mp 4
Reject: events in wrong phase / stage
(ii) 1. More / faster mitosis / division near tip / at 0.2 mm ;

Neutral: references to largest mitotic index
2. (Almost) no mitosis / division at / after 1.6 mm from tip;

Accept: cell division for mitosis
Penalise once for references to meiosis
3. (So) roots grow by mitosis / adding new cells to the tip. Accept: growth occurs at / near / just behind the tip (of the root)
Accept: converse arguments

M3.(a) Deoxyribose.
(b) 1. Thymine 18 (\%);
2. Guanine 32 (\%).
(c) DNA polymerase.
(d) 1. (Figure $\mathbf{1}$ shows) DNA has antiparallel strands / described;
2. (Figure 1 shows) shape of the nucleotides is different / nucleotides aligned differently;
3. Enzymes have active sites with specific shape;
4. Only substrates with complementary shape / only the 3' end can bind with active site of enzyme / active site of DNA polymerase.
ase.

M4.(a) 1. Outside of virus has antigens / proteins;
2. With complementary shape to receptor / protein in membrane of cells;
3. (Receptor / protein) found only on membrane of nerve cells.

Accept converse argument
(b) 1. No more (nerve) cells infected / no more cold sores form;
2. (Because) virus is not replicating.
(c) Prevents replication of virus.
(d) MicroRNA binds to cell's mRNA (no mark)

1. (Binds) by specific base pairing;
2. (So) prevents mRNA being read by ribosomes;
3. (So) prevents translation / production of proteins;
4. (Proteins) that cause cell death.

M5.(a) Box around single nucleotide.
(b)

DNA strand	Percentage of each base			
	A	C	G	T
Strand 1	(16)	34	21	29
Strand 2	29	(21)	(34)	16

2 rows correct = 2 marks;
1 row correct = 1 mark.
(c) 1. Reference to DNA polymerase;
2. (Which is) specific;
3. Only complementary with / binds to 5' end (of strand);

Reject hydrogen bonds / base pairing
4. Shapes of 5^{\prime} end and 3^{\prime} end are different / description of how different.

M6.(a) (i) Repeating units / nucleotides / monomer / molecules;
Allow more than one, but reject two
(ii) 1. $\mathrm{C}=$ hydrogen bonds;
2. $\mathrm{D}=$ deoxyribose;

Ignore sugar
3. $E=$ phosphate;

Ignore phosphorus, Ignore molecule
(iii)

Name of base	Percentage
Thymine	34
Cytosine / Guanine	16
Adenine	34
Cytosine / Guanine	16

Spelling must be correct to gain MP1
First mark = names correct
Second mark $=\%$ correct, with adenine as 34\%
(b) (i) 153 ;
(ii) Some regions of the gene are non-coding / introns / start / stop code / triplet / there are two DNA strands;

Allow addition mutation
Ignore unqualified reference to mutation
Accept reference to introns and exons if given together
Ignore 'junk' DNA / multiple repeats

